Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 535-542, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967660

RESUMEN

During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.


Asunto(s)
Cocaína , Síndrome de Abstinencia a Sustancias , Ratas , Animales , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Calcio/metabolismo , Ratas Sprague-Dawley , Microglía/metabolismo , Receptores AMPA/metabolismo
2.
J Physiol ; 601(2): 335-353, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515167

RESUMEN

Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.


Asunto(s)
Corteza Motora , Receptores de GABA-A , Ratones , Ratas , Animales , Receptores de GABA-A/metabolismo , Receptores AMPA/metabolismo , Corteza Motora/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Ácido gamma-Aminobutírico , Ratones Transgénicos
3.
Nutrients ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235789

RESUMEN

In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer's disease.


Asunto(s)
Cognición , Receptores AMPA , Anciano , Animales , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Glutamatos/farmacología , Hipocampo/metabolismo , Humanos , Monosacáridos/farmacología , Plasticidad Neuronal , Nutrientes , Receptores AMPA/metabolismo , Azúcares/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
4.
Nutrients ; 14(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014775

RESUMEN

Selenium (Se) is an essential trace element required for normal development as well as to counteract the adverse effects of environmental stressors. Conditions of low Se intake are present in some European countries. Our aim was to investigate the short- and long-term effects of early-life low Se supply on behavior and synaptic plasticity with a focus on the hippocampus, considering both suboptimal Se intake per se and its interaction with developmental exposure to lead (Pb). We established an animal model of Se restriction and low Pb exposure; female rats fed with an optimal (0.15 mg/kg) or suboptimal (0.04 mg/kg) Se diet were exposed from one month pre-mating until the end of lactation to 12.5 µg/mL Pb via drinking water. In rat offspring, the assessment of motor, emotional, and cognitive endpoints at different life stages were complemented by the evaluation of the expression and synaptic distribution of NMDA and AMPA receptor subunits at post-natal day (PND) 23 and 70 in the hippocampus. Suboptimal Se intake delayed the achievement of developmental milestones and induced early and long-term alterations in motor and emotional abilities. Behavioral alterations were mirrored by a drop in the expression of the majority of NMDA and AMPA receptor subunits analyzed at PND 23. The suboptimal Se status co-occurring with Pb exposure induced a transient body weight increase and persistent anxiety-like behavior. From the molecular point of view, we observed hippocampal alterations in NMDA (Glun2B and GluN1) and AMPA receptor subunit trafficking to the post-synapse in male rats only. Our study provides evidence of potential Se interactions with Pb in the developing brain.


Asunto(s)
Conducta Animal , Discapacidades del Desarrollo , Hipocampo , Plomo , Receptores de Glutamato , Selenio , Animales , Conducta Animal/fisiología , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/psicología , Modelos Animales de Enfermedad , Ingestión de Alimentos , Femenino , Hipocampo/metabolismo , Plomo/metabolismo , Plomo/toxicidad , Masculino , N-Metilaspartato/farmacología , Ratas , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Selenio/deficiencia , Selenio/metabolismo , Selenio/farmacología
5.
Brain Res ; 1783: 147848, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35227653

RESUMEN

Glutamate excitotoxicity plays a role in spinal cord injury (SCI). This study aimed to explore whether electroacupuncture (EA) improved the functional recovery of spinal cord anterior horn neurons of rats with acute SCI by regulating the GluR1 AMPA subunit in the SCI area. Eighty Sprague-Dawley rats were randomly divided into 5 groups: sham operation, model, AMPA antagonist (DNQX), EA and DNQX + EA group (n = 16/group). The models were obtained by using the modified Allen's impact method. DNQX was given by intrathecal injection 0.5 h after modeling. EA was performed at the "Dazhui" and "Mingmen" acupoints for 30 min at 0.5, 12, and 24 h. The BBB scores were evaluated before modeling and at 6, 24, and 48 h after modeling. Histopathological changes were evaluated. GluR1 expression was evaluated through immunofluorescence and western blot. Compared to the sham group, the BBB scores at 6, 24, and 48 h in the model group were all lower. The BBB scores and histopathological changes in the EA, DNQX and DNQX + EA group were between that of the sham and model group. GluR1 expression in the model group was higher than the sham group. Compared with the model group, the expression of GluR1 protein in the EA, DNQX, and DNQX + EA group was decreased, but similar among the three treatment groups, supporting the histopathological observations. In conclusion, these findings indicated that EA treatment might inhibit GluR1 expression, thus contributing to prevention of secondary nerve injury after primary acute SCI.


Asunto(s)
Electroacupuntura , Receptores AMPA , Traumatismos de la Médula Espinal , Animales , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia
6.
Neurosci Lett ; 775: 136538, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35189316

RESUMEN

The calcium/calmodulin-dependent protein phosphase calcineurin (CaN) regulates synaptic plasticity by controlling the phosphorylation of synaptic proteins including AMPA type glutamate receptors. The regulator of calcineurin 1 (RCAN1) is characterized as an endogenous inhibitor of CaN and its dysregulation is implicated in multiple neurological disorders. However, whether RCAN1 is engaged in nociceptive processing in the spinal dorsal horn remains unrevealed. In this study, we found that RCAN1 was predominately expressed in pain-related neurons in the superficial dorsal horn of the spinal cord. Intraplantar injection of complete Freund's adjuvant (CFA) specifically increased the total and synaptic expression of the RCAN1.4 isoform in spinal dorsal horn. The CFA-induced inflammation also caused an increased binding of RCAN1.4 to CaN. Overexpression of RCAN1.4 in spinal dorsal horn of intact mice produced both mechanical allodynia and thermal hyperalgesia, which were accompanied by increased synaptic expression and phosphorylation of GluA1 subunit. Furthermore, the siRNA-mediated knockdown of RCAN1.4 significantly attenuated the development of pain hypersensitivity, meanwhile, decreased the synaptic expression of GluA1 in mice with peripheral inflammation. These data suggested that the increased expression of RCAN1.4 contributed to the development of inflammatory pain hypersensitivity, at least in part by promoting the synaptic recruitment of GluA1-containing AMPA receptor.


Asunto(s)
Calcineurina , Asta Dorsal de la Médula Espinal , Animales , Calcineurina/metabolismo , Adyuvante de Freund/metabolismo , Adyuvante de Freund/toxicidad , Hiperalgesia/metabolismo , Inflamación/metabolismo , Ratones , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Receptores AMPA/metabolismo , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Regulación hacia Arriba
7.
J Neurochem ; 161(1): 40-52, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038178

RESUMEN

Glutamate AMPA receptors (AMPARs) lacking GluA2 subunit are calcium permeable (CP-AMPARs), which are increased in the hypothalamic paraventricular nucleus (PVN) and maintain sympathetic outflow in hypertension. Here, we determined the role of α2δ-1, an NMDA receptor-interacting protein, in regulating synaptic CP-AMPARs in the hypothalamus in spontaneously hypertensive rats (SHR). Co-immunoprecipitation showed that levels of GluA1/GluA2, but not GluA2/GluA3, protein complexes in hypothalamic synaptosomes were reduced in SHR compared with Wistar-Kyoto rats (WKY). The level of GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of the hypothalamus was significantly lower in SHR than in WKY, which was restored by inhibiting α2δ-1 with gabapentin. Gabapentin also switched AMPAR-mediated excitatory postsynaptic currents (AMPAR-EPSCs) from inward rectifying to linear and attenuated the inhibitory effect of IEM-1460, a selective CP-AMPAR blocker, on AMPAR-EPSCs in spinally projecting PVN neurons in SHR. Furthermore, co-immunoprecipitation revealed that α2δ-1 directly interacted with GluA1 and GluA2 in the hypothalamus of rats and humans. Levels of α2δ-1/GluA1 and α2δ-1/GluA2 protein complexes in the hypothalamus were significantly greater in SHR than in WKY. Disrupting the α2δ-1-AMPAR interaction with an α2δ-1 C terminus peptide normalized GluA1/GluA2 heteromers in the endoplasmic reticulum of the hypothalamus diminished in SHR. In addition, α2δ-1 C terminus peptide diminished inward rectification of AMPAR-EPSCs and the inhibitory effect of IEM-1460 on AMPAR-EPSCs of PVN neurons in SHR. Thus, α2δ-1 augments synaptic CP-AMPARs by inhibiting GluA1/GluA2 heteromeric assembly in the hypothalamus in hypertension. These findings extend our understanding of the molecular basis of sustained sympathetic outflow in neurogenic hypertension.


Asunto(s)
Hipertensión , Receptores AMPA , Animales , Gabapentina , Hipertensión/metabolismo , Hipotálamo/metabolismo , Péptidos/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
J Nutr Biochem ; 87: 108516, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022406

RESUMEN

Dietary obesity compromises brain function, but the effects of high-fat food on synaptic transmission in hypothalamic networks, as well as their potential reversibility, are yet to be fully characterized. We investigated the impact of high-fat feeding on a hallmark of synaptic plasticity, i.e., the expression of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) that contain the subunits GluA1 and GluA2, in hypothalamic and cortical synaptoneurosomes of male rats. In the main experiment (experiment 1), three days, but not one day of high-fat diet (HFD) decreased the levels of AMPAR GluA1 and GluA2 subunits, as well as GluA1 phosphorylation at Ser845, in hypothalamus but not cortex. In experiment 2, we compared the effects of the three-day HFD with those a three-day HFD followed by four recovery days of normal chow. This experiment corroborated the suppressive effect of high-fat feeding on hypothalamic but not cortical AMPAR GluA1, GluA2, and GluA1 phosphorylation at Ser845, and indicated that the effects are reversed by normal-chow feeding. High-fat feeding generally increased energy intake, body weight, and serum concentrations of insulin, leptin, free fatty acids, and corticosterone; only the three-day HFD increased wakefulness assessed via video analysis. Results indicate a reversible down-regulation of hypothalamic glutamatergic synaptic strength in response to short-term high-fat feeding. Preceding the manifestation of obesity, this rapid change in glutamatergic neurotransmission may underlie counter-regulatory efforts to prevent excess body weight gain, and therefore, represent a new target of interventions to improve metabolic control.


Asunto(s)
Dieta Alta en Grasa , Hipotálamo/fisiología , Plasticidad Neuronal , Receptores AMPA/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía , Masculino , Obesidad/etiología , Obesidad/metabolismo , Fosforilación , Ratas Wistar , Receptores AMPA/análisis , Sinapsis/fisiología , Vigilia
9.
Biomed Pharmacother ; 133: 111031, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249277

RESUMEN

Tramadol, a weak agonist of mu-opioid receptors, causes seizure via several mechanisms. Preconditioning has been purposed to reduce the epileptic seizures in animal models of epilepsy. The preconditioning effect of tramadol on seizure is not studied yet. This study was designed to evaluate the preconditioning effect of ultra-low dose of tramadol on the seizures induced by tramadol at high dose. Furthermore, regarding the critical role of glutamate signaling in the pathogenesis of epilepsy, the effect of preconditioning on some glutamate signaling elements was also examined. Male Wistar rats received tramadol (2 mg/kg, i.p) or normal saline (1 mL/kg, i.p) in preconditioning and control groups, respectively. After 4 days, the challenging tramadol dose (150 mg/kg) was injected to all rats. Epileptic behaviors were recorded during 50 min. The expression of Norbin (as a regulator of metabotropic glutamate receptor 5), Calponin3 (as a regulator of excitatory synaptic markers), NR1 (NMDA receptor subunit 1) and GluR1 (AMPA receptor subunit 1) was measured in hippocampus, prefrontal cortex (PFC) and amygdala. Preconditioning decreased the number and duration of tremors and tonic-clonic seizures. Norbin, Calponin3, NR1 and GluR1 expression were decreased in hippocampus, and preconditioning had no effect on them. In contrast, it increased Norbin expression in PFC and amygdala, and attenuated NR1 and GluR1 upregulation following tramadol at high dose. These findings indicated that preconditioning by ultra-low dose of tramadol protected the animals against seizures following high dose of tramadol mediated, at least in part, by Norbin up regulation, and NR1 and GluR1 down regulation.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Anticonvulsivantes/administración & dosificación , Encéfalo/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/prevención & control , Tramadol/administración & dosificación , Analgésicos Opioides/toxicidad , Animales , Anticonvulsivantes/toxicidad , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ratas Wistar , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Índice de Severidad de la Enfermedad , Tramadol/toxicidad , Calponinas
10.
J Ethnopharmacol ; 268: 113665, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33307051

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gardeniae fructus is a traditional Chinese herb which exerts antidepressant effect. However, its effective constituent and potential mechanism are still unknown. AIM OF THE STUDY: To examine whether iridoids, a type of monoterpenoids from Gardeniae fructus (IGF), exerts antidepressant effect by enhancing synaptic plasticity via AMPA receptor-mTOR signaling. MATERIALS AND METHODS: The antidepressant effect of IGF (15 mg/kg; 30 mg/kg; 45 mg/kg) was investigated in spatial restraint stress (SRS)-induced mice. The expression levels of AMPA receptor-mTOR signaling and synaptic proteins were measured by Western blot, dendritic spine density was observed in Golgi staining. AMPA receptor (AMPAR) inhibitor NBQX and mTOR inhibitor Rapamycin were employed to determine the roles of AMPAR and mTOR signaling in IGF-induced antidepressant effects. RESULTS: After IGF administration, the expression of the AMPA glutamate receptor Glutamate Receptor 1 (GluA1) was inhibited in SRS mice. We also observed a trend toward the up-regulation of the mammalian target of Rapamycin (mTOR) protein kinase, p70 ribosomal protein S6K (P70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). The protein levels of Synapsin-1 and PSD-95 were decreased after SRS challenge, along with declined dendritic spine density, which were all reversed with IGF treatment. Furthermore, the treatment efficacy of IGF were blocked with AMPA receptor inhibitor NBQX or mTOR inhibitor Rapamycin. CONCLUSION: IGF exerted antidepressive-like effects by stimulating AMPAR-mTOR signaling regulated synaptic plasticity enhancement. This work provided an important basis for developing IGF and Gardeniae fructus as potential anti-depressants.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/metabolismo , Gardenia , Iridoides/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Receptores AMPA/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/psicología , Relación Dosis-Respuesta a Droga , Iridoides/aislamiento & purificación , Iridoides/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Plasticidad Neuronal/fisiología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Pain ; 162(5): 1322-1333, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33230002

RESUMEN

ABSTRACT: Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become "unsilenced" by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.


Asunto(s)
Giro del Cíngulo , Neuralgia , Animales , Giro del Cíngulo/metabolismo , Masculino , Ratones , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Tálamo
12.
Aging Cell ; 20(1): e13289, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33336891

RESUMEN

Alzheimer's disease (AD), a severe age-related neurodegenerative disorder, lacks effective therapeutic methods at present. Physical approaches such as gamma frequency light flicker that can effectively reduce amyloid load have been reported recently. Our previous research showed that a physical method named photobiomodulation (PBM) therapy rescues Aß-induced dendritic atrophy in vitro. However, it remains to be further investigated the mechanism by which PBM affects AD-related multiple pathological features to improve learning and memory deficits. Here, we found that PBM attenuated Aß-induced synaptic dysfunction and neuronal death through MKP7-dependent suppression of JNK3, a brain-specific JNK isoform related to neurodegeneration. The results showed PBM-attenuated amyloid load, AMPA receptor endocytosis, dendrite injury, and inflammatory responses, thereby rescuing memory deficits in APP/PS1 mice. We noted JNK3 phosphorylation was dramatically decreased after PBM treatment in vivo and in vitro. Mechanistically, PBM activated ERK, which subsequently phosphorylated and stabilized MKP7, resulting in JNK3 inactivation. Furthermore, activation of ERK/MKP7 signaling by PBM increased the level of AMPA receptor subunit GluR 1 phosphorylation and attenuated AMPA receptor endocytosis in an AD pathological model. Collectively, these data demonstrated that PBM has potential therapeutic value in reducing multiple pathological features associated with AD, which is achieved by regulating JNK3, thus providing a noninvasive, and drug-free therapeutic strategy to impede AD progression.


Asunto(s)
Enfermedad de Alzheimer/genética , Terapia por Luz de Baja Intensidad/métodos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Receptores AMPA/metabolismo , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Endocitosis , Humanos , Masculino , Ratones
13.
Folia Neuropathol ; 58(3): 245-252, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33099294

RESUMEN

The present study was performed to evaluate the protective effects of icariin on cognitive function in a hypoxia-induced neonatal epilepsy rat model. Neonatal epilepsy was induced in rat pups on postnatal day (PD) 20 by induction of hypoxia for 15 minutes. Rats were treated intraperitoneally with icariin at 75 mg/kg 1 hour before the induction of hypoxia. The effects of icariin were examined by estimating seizure stage, cognitive function and parameters of electroencephalography (EEG) in this neonatal epilepsy rat model. Parameters of oxidative stress and expression of proteins were examined in the brain tissue of the neonatal epilepsy rat model by histopathological study and Western blotting analysis, respectively. The results of this study suggest that treatment with icariin ameliorates the changes in seizure stage, number of seizures and parameters of EEG in hypoxia-induced neonatal epilepsy rats. Oxidative stress and apoptosis were decreased in the brain tissue of the icariin treatment group compared to the hypoxia group. Moreover, treatment with icariin ameliorated the altered expression of glutamate ionotropic receptor AMPA type subunit 2 (GluR2) and extracellular receptor kinase (ERK I/II) proteins in the brain tissue of hypoxia-induced epilepsy rats. Histopathological study also showed that icariin treatment improved the histopathology of brain tissue of hypoxia-induced epilepsy rats. In conclusion, the results of the present study suggest that icariin protects against neuronal injury and improves cognitive function in hypoxia-induced neonatal epilepsy rats by modulating the GluR2/ERK I/II pathway.


Asunto(s)
Anticonvulsivantes/farmacología , Cognición/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Epilepsia/metabolismo , Flavonoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptores AMPA/metabolismo , Animales , Animales Recién Nacidos , Anticonvulsivantes/uso terapéutico , Apoptosis/efectos de los fármacos , Asfixia Neonatal/complicaciones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Flavonoides/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas
14.
Food Funct ; 11(10): 8978-8986, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33001073

RESUMEN

Previous researches have indicated that sleep plays a vital role in cognitive functions. Sleep deprivation (SD) causes learning and memory damage, which is associated with oxidative stress. This study was performed to investigate the neuroprotective effects of an extract of Abelmoschus manihot flower (EAM) against memory deficit induced by SD in mice. The SD model was evoked by multiple platform method for 5 days, successively. The learning and memory-improving effects of EAM were assessed by behavioral trials and the underlying mechanism was investigated by measuring the oxidative stress alteration. Our findings indicated that the SD-induced memory deficit and the EAM treatment improved the cognitive functions of mice in the object location recognition test and passive avoidance task. In addition, EAM effectively improved the activities of the antioxidant enzyme, decreased the content of malondialdehyde (MDA), and restored the protein expression of the brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and glutamate receptor 1 (GluR1) in brain tissues. In conclusion, EAM could improve the SD-evoked learning and memory impairments. The possible underlying mechanisms of EAM may be related to its antioxidant capacity and enhanced BDNF/TrkB/GluR1 levels in the hippocampal memory.


Asunto(s)
Abelmoschus/química , Trastornos de la Memoria/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Privación de Sueño/complicaciones , Animales , Antioxidantes/administración & dosificación , Antioxidantes/aislamiento & purificación , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/efectos de los fármacos , Flores/química , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Memoria/efectos de los fármacos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/aislamiento & purificación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Privación de Sueño/psicología
15.
Mol Brain ; 13(1): 110, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758248

RESUMEN

Autism Spectrum Disorders (ASD) are characterised by deficits in social interactions and repetitive behaviours. Multiple ASD-associated mutations have been identified in the Shank family of proteins that play a critical role in the structure and plasticity of glutamatergic synapses, leading to impaired synapse function and the presentation of ASD-associated behavioural deficits in mice. Shank proteins are highly regulated by zinc, where zinc binds the Shank SAM domain to drive synaptic protein recruitment and synaptic maturation. Here we have examined the influence of maternal dietary zinc supplementation during pregnancy and lactation on the development of ASD-associated behavioural and synaptic changes in the offspring Shank3 knockout (Shank3-/-) mice. Behavioural and electrophysiological experiments were performed in juvenile and adult Shank3-/- and wildtype littermate control mice born from mothers fed control (30 ppm, ppm) or supplemented (150 ppm) dietary zinc. We observed that the supplemented maternal zinc diet prevented ASD-associated deficits in social interaction and normalised anxiety behaviours in Shank3-/- offspring mice. These effects were maintained into adulthood. Repetitive grooming was also prevented in adult Shank3-/- offspring mice. At the synaptic level, maternal zinc supplementation altered postsynaptic NMDA receptor-mediated currents and presynaptic function at glutamatergic synapses onto medium spiny neurons in the cortico-striatal pathway of the Shank3-/- offspring mice. These data show that increased maternal dietary zinc during pregnancy and lactation can alter the development of ASD-associated changes at the synaptic and the behavioural levels, and that zinc supplementation from the beginning of brain development can prevent ASD-associated deficits in Shank3-/- mice long term.


Asunto(s)
Trastorno Autístico/patología , Conducta Animal , Suplementos Dietéticos , Proteínas de Microfilamentos/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Sinapsis/patología , Zinc/farmacología , Animales , Ansiedad/patología , Encéfalo/metabolismo , Femenino , Glutamatos/metabolismo , Aseo Animal , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Receptores AMPA/metabolismo , Conducta Social , Espectrofotometría Atómica , Sinapsis/efectos de los fármacos
16.
Sci Rep ; 10(1): 10312, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587303

RESUMEN

Acupuncture has been used to treat a variety of illness and involves the insertion and manipulation of needles into specific points on the body (termed "acupoints"). It has been suggested that acupoints are not merely discrete, static points, but can be dynamically changed according to the pathological state of internal organs. We investigated in a rat model of mustard oil (MO)-induced visceral hyperalgesia whether the number and size of acupoints were modified according to the severity of the colonic pain, and whether the changes were associated with enhanced activity of the spinal dorsal horn. In MO-treated rats, acupoints showing neurogenic inflammation (termed "neurogenic spots" or Neuro-Sps) were found both bilaterally and unilaterally on the leg. The number and size of these acupoints increased along with increasing doses of MO. Electroacupuncture of the acupoints generated analgesic effects on MO-induced visceral hypersensitivity. The MO-treated rats showed an increase in c-Fos expression in spinal dorsal horn neurons and displayed increased evoked activity and a prolonged after-discharge in spinal wide dynamic response (WDR) neurons in response to colorectal distension. Increased number and size of neurogenic inflammatory acupoints following MO treatment were reduced by inhibiting AMPA and NMDA receptors in the spinal cord. Our findings suggest that acupoints demonstrate increased number and size along with severity of visceral pain, which may be associated with enhanced neuronal responses in spinal dorsal horn neurons.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura/métodos , Hiperalgesia/terapia , Células del Asta Posterior/fisiología , Dolor Visceral/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Masculino , Planta de la Mostaza/toxicidad , Aceites de Plantas/toxicidad , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Dolor Visceral/inducido químicamente , Dolor Visceral/fisiopatología
17.
Neuroreport ; 31(12): 857-864, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32453025

RESUMEN

Chronic sleep loss caused lots of health problems, also including cognition impairment. Tea is one of the most popular drinks when people stay up late. Nevertheless, the effects of tea on sleep deprivation-induced cognition impairment are still unclear. In the present study, we found 24-h sleep deprivation (S-DEP) increased membrane α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor level through a tumor necrosis factor α (TNFα)-dependent pathway in hippocampi. Blocking elevated TNFα level can protect S-DEP mice from impaired learning ability according to behavioral test. Tea polyphenols, major active compounds in green tea, suppressed TNFα production through downregulating TNFα converting enzyme (TACE) level. Meanwhile, tea polyphenols treatment could ameliorate recognition impairment and anxiety-like behaviors in S-DEP mice. The aforementioned results demonstrate cognition protective effects of tea polyphenols in S-DEP mice model, which provide a theoretical basis for the treatments of S-DEP-induced cognition impairment by targeting the TACE/TNFα/AMPA pathway.


Asunto(s)
Memoria/efectos de los fármacos , Polifenoles/farmacología , Receptores AMPA/efectos de los fármacos , Privación de Sueño/tratamiento farmacológico , , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Sustancias Protectoras/farmacología , Receptores AMPA/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Privación de Sueño/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Braz J Med Biol Res ; 53(4): e9175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32267308

RESUMEN

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the predominant mediators of glutamate-induced excitatory neurotransmission. It is widely accepted that AMPA receptors are critical for the generation and spread of epileptic seizure activity. Dysfunction of AMPA receptors as a causal factor in patients with intractable epilepsy results in neurotransmission failure. Brain-specific serine/threonine-protein kinase 1 (SAD-B), a serine-threonine kinase specifically expressed in the brain, has been shown to regulate AMPA receptor-mediated neurotransmission through a presynaptic mechanism. In cultured rat hippocampal neurons, the overexpression of SAD-B significantly increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Here, we showed that SAD-B downregulation exerted antiepileptic activity by regulating AMPA receptors in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We first used immunoblotting and immunohistochemistry analysis to demonstrate that SAD-B expression was increased in the epileptic rat brain. Subsequently, to explore the function of SAD-B in epilepsy, we used siRNA to knock down SAD-B protein and observed behavior after PTZ-induced seizures. We found that SAD-B downregulation attenuated seizure severity and susceptibility in the PTZ-induced epileptic model. Furthermore, we showed that the antiepileptic effect of SAD-B downregulation on PTZ-induced seizure was abolished by CNQX (an AMPA receptor inhibitor), suggesting that SAD-B modulated epileptic seizure by regulating AMPA receptors in the brain. Taken together, these findings suggest that SAD-B may be a potential and novel therapeutic target to limit epileptic seizures.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Agonistas de Aminoácidos Excitadores/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores AMPA/metabolismo , Adolescente , Adulto , Animales , Niño , Epilepsia del Lóbulo Temporal/inducido químicamente , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pentilenotetrazol , Ratas Sprague-Dawley , Adulto Joven
19.
J Ethnopharmacol ; 254: 112727, 2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32147481

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Evodiamine (EVO) is a natural compound derived from Tetradium ruticarpum (A.Juss.) T.G.Hartley used to treat pain and migraine in traditional Chinese medicine. EVO is the primary active ingredient of Tetradium ruticarpum. However, the preventive effect of EVO against migraine remains unexplored. AIM OF THE STUDY: To investigate the preventive effect of EVO against nitroglycerin (NTG)-induced acute migraine in rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were intragastrically administered EVO (45 or 90 mg/kg) for nine days. To establish an acute migraine model, we subcutaneously injected rats with a 10 mg/kg NTG solution. The migraine-like behavior of the rats was evaluated via the formalin test and the warm water tail-withdrawal assay. The periaqueductal gray (PAG) and serum samples were collected from the rats and used to determine the effect of EVO on the levels of serum nitric oxide (NO), CGRP, c-Fos, neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor GluA1. RESULTS: The formalin test and the warm water tail-withdrawal assay showed that EVO inhibited the licking foot/shaking response and reversed the shortened tail-withdrawal latency in NTG-treated rats. Additionally, EVO suppressed serum NO levels and reduced the mRNA/protein expression of c-Fos and nNOS, but not iNOS, in the PAG. Furthermore, EVO suppressed total protein expression of the AMPA receptor GluA1 and its phosphorylation at Ser831 and Ser845. CONCLUSIONS: This study showed that EVO inhibits the migraine-like pain response and that this beneficial effect might be attributed to the regulation of nNOS and suppression of the AMPA receptor GluA1. We suggest that EVO has the potential to treat migraine as a lead compound of natural origin.


Asunto(s)
Analgésicos/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dolor/tratamiento farmacológico , Quinazolinas/uso terapéutico , Receptores AMPA/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Óxido Nítrico/sangre , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo II/genética , Nitroglicerina , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Quinazolinas/farmacología , Ratas Sprague-Dawley , Receptores AMPA/metabolismo
20.
Mol Brain ; 13(1): 27, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32102661

RESUMEN

Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington's disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer's disease.


Asunto(s)
Región CA1 Hipocampal/patología , Espinas Dendríticas/metabolismo , Aprendizaje , Trastornos de la Memoria/complicaciones , Neuronas/patología , Edición de ARN , Receptores AMPA/metabolismo , Convulsiones/complicaciones , Animales , Secuencia de Bases , Peso Corporal , Región CA1 Hipocampal/fisiopatología , Miedo , Potenciación a Largo Plazo , Trastornos de la Memoria/fisiopatología , Ratones , Actividad Motora , Plasticidad Neuronal , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/fisiopatología , Análisis de Supervivencia , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA